Adaptive Stochastic Conjugate Gradient Optimization for Temporal Medical Image Registration

نویسنده

  • Huanhuan Xu
چکیده

We propose an Adaptive Stochastic Conjugate Gradient (ASCG) optimization algorithm for temporal medical image registration. This method combines the advantages of Conjugate Gradient (CG) method and Adaptive Stochastic Gradient Descent (ASGD) method. The main idea is that the search direction of ASGD is replaced by stochastic approximations of the conjugate gradient of the cost function. In addition, the step size of ASCG is based on the approximation of the Lipschitz constant of the stochastic gradient function. Thus, this algorithm could maintain the good properties of the conjugate gradient method, meanwhile it uses less gradient computation time per iteration and adjusts the step size adaptively as the ASGD method. As a result, this algorithm takes less CPU time than the previous ASGD method. We demonstrate the efficiency of our algorithm on the public available 4D Lung CT data and our clinical Lung/Tumor CT data using the general 4D image registration model. We compare the ASCG with several existing iterative optimization strategies: steepest gradient descent method, conjugate gradient method, Quasi-Newton method (LBFGS) and adaptive stochastic gradient descent method. Our preliminary results indicate that our ASCG algorithm achieves 22% higher accuracy on the POPI dataset and it also performs better than existing methods on other datasets(DIR-Lab dataset and our clinical dataset). Furthermore, we demonstrate that compared with other methods, our ASCG algorithm is more robust to image noises.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of optimization methods for intensity-based 2D-3D registration in x-ray guided interventions

The advantage of 2D-3D image registration methods versus direct image-to-patient registration, is that these methods generally do not require user interaction (such as manual annotations), additional machinery or additional acquisition of 3D data. A variety of intensity-based similarity measures has been proposed and evaluated for different applications. These studies showed that the registrati...

متن کامل

Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach

A registration method for motion estimation in dynamic medical imaging data is proposed. Registration is performed directly on the dynamic image, thus avoiding a bias towards a specifically chosen reference time point. Both spatial and temporal smoothness of the transformations are taken into account. Optionally, cyclic motion can be imposed, which can be useful for visualization (viewing the s...

متن کامل

Preconditioned Stochastic Gradient Descent Optimisation for Monomodal Image Registration

We present a stochastic optimisation method for intensity-based monomodal image registration. The method is based on a Robbins-Monro stochastic gradient descent method with adaptive step size estimation, and adds a preconditioning matrix. The derivation of the pre-conditioner is based on the observation that, after registration, the deformed moving image should approximately equal the fixed ima...

متن کامل

Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information

Maximization of mutual information of voxel intensities has been demonstrated to be a very powerful criterion for three-dimensional medical image registration, allowing robust and accurate fully automated affine registration of multimodal images in a variety of applications, without the need for segmentation or other preprocessing of the images. In this paper, we investigate the performance of ...

متن کامل

Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization

In this paper, we present a novel deformable registration algorithm for diffusion tensor MR images that enables explicit optimization of tensor reorientation. The optimization seeks a piecewise affine transformation that divides the image domain into uniform regions and transform each region affinely. The objective function captures both the image similarity and the smoothness of the transforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013